Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Qiang Yin, Yun-Mei Shi, Hui-Min Liu, Chun-Bao Li and Wen-Qin Zhang*

Department of Chemistry, Tianjin University, Tianjin 300072, People's Republic of China

Correspondence e-mail: wqzhang@eyou.com

Key indicators

Single-crystal X-ray study
$T=273 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.053$
$w R$ factor $=0.152$
Data-to-parameter ratio $=13.7$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

(E)-3,5,4'-Trimethoxystilbene

The title compound, $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{3}$, was prepared from the Wittig-Horner reaction of 3,5-dimethoxybenzyldehyde and dimethyl(4-methoxybenzyl)phosphite. There are two molecules in the asymmetric unit, with different conformations.

Comment

Recently, (E)-stilbene derivatives have attracted considerable interest because of their non-linear optical properties (Soto Bustmante et al., 1995; Papper \& Likhtenshtein, 2001) and biological activities. The title compound, (I), is a key intermediate in the synthesis of trans-resveratrol, which has been shown to prevent cancer, lower blood pressure, and reduce osteoporosis (Frémont, 2000; Savouret \& Quesne, 2002).

(I)

There are two molecules, A and B, in the asymmetric unit (Fig. 1); the 3,5-dimethoxy groups adopt s-syn and s-anti conformations in molecules A and B, respectively. The torsion angles of the 4-methoxy groups relative to the benzene rings in A and B are -171.1 (3) and 170.3 (2) ${ }^{\circ}$, respectively, and those of the 3,5-dimethoxy groups are in the range 174.9 (3)177.8 (3) ${ }^{\circ}$. The fact that these methoxy groups are almost coplanar with the benzene rings indicates that all these O atoms are $s p^{2}$ hybridized (Zhang et al., 2001; Zheng et al., 2001). The angles between the benzene ring planes in A and B are 26.1 (3) and $25.0(3)^{\circ}$, respectively; however, that in $2,4^{\prime}$ -dihydroxy-3,3'-dimethoxy-5-methylstilbene is 8.90 (9) ${ }^{\circ}$ (Li et al., 1999). From Fig. 1, it can be seen that the alkene moieties are slightly twisted; the torsion angles $\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$ and $\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$ in molecule A are 165.3 (3) and 170.8 (3) ${ }^{\circ}$, respectively, while $\mathrm{C} 21-\mathrm{C} 22-\mathrm{C} 24-\mathrm{C} 25$ and $\mathrm{C} 24-\mathrm{C} 25-$ $\mathrm{C} 26-\mathrm{C} 31$ in molecule B are -159.6 (3) and $-178.1(3)^{\circ}$, respectively.

Experimental

4-Methoxybenzyl chloride (0.06 mol) was heated in a 100 ml roundbottomed flask with trimethylphosphite $(20 \mathrm{ml})$ until the evolution of methyl chloride had ceased. The excess trimethylphosphite was removed by distillation in vacuo. The residue was charged with 3,5dimethoxybenzaldehyde (DMBA, 0.06 mol), $\mathrm{KOH}(7.5 \mathrm{~g}$) and DMSO (50 ml). The reaction mixture was stirred at 303 K until there

Received 6 September 2002

 Accepted 26 September 2002 Online 30 September 2002

Figure 1
View of the two independent molecules of (I), shown with 50% probability ellipsoids.
was no DMBA detected by thin-layer chromatography. Then water $(50 \mathrm{ml})$ was added and the mixture was extracted with ethyl acetate. The organic layer was washed with water and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed by distillation in vacuo. The resulting (E)-3,5,4'-trimethoxystilbene was pure, according to HPLC; yield 15.4 g (95\%), m.p. 329.5-330.5 K (literature m.p. 330 K ; Ali et al., 1992). Crystals were obtained by slow evaporation of a solution in ethyl acetate. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 3.83(9 \mathrm{H}, s)$, $6.38(1 \mathrm{H}, t ; J=2 \mathrm{~Hz}, \mathrm{H}-4), 6.65(2 \mathrm{H}, d ; J=2 \mathrm{~Hz}, \mathrm{H}-2,6), 6.87-6.93$ $(3 \mathrm{H}, m), 7.04(1 \mathrm{H}, d ; J=16 \mathrm{~Hz},-\mathrm{CH}=\mathrm{CH}-), 7.45(2 \mathrm{H}, d ; J=8.8 \mathrm{~Hz}$, $\left.\mathrm{H}-2^{\prime}, 6^{\prime}\right)$.

Crystal data

$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{3}$
$M_{r}=270.31$
Triclinic, $P \overline{1}$
$a=9.958$ (4) A
$b=10.048$ (4) \AA
$c=16.205(6) \AA$
$\alpha=90.695(8)^{\circ}$
$\beta=105.545(7)^{\circ}$
$\gamma=111.835(7)^{\circ}$
$V=1438.7(10) \AA^{3}$

$$
\begin{aligned}
& Z=4 \\
& D_{x}=1.248 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 664 \\
& \quad \text { reflections } \\
& \theta=2.3-22.9^{\circ} \\
& \mu=0.09 \mathrm{~mm}^{-1} \\
& T=273(2) \mathrm{K} \\
& \text { Prism, colorless } \\
& 0.30 \times 0.25 \times 0.20 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Bruker, 1997)
$T_{\text {min }}=0.975, T_{\text {max }}=0.983$
5991 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.053$
$w R\left(F^{2}\right)=0.152$
$S=0.96$
5058 reflections
368 parameters
H atoms treated by a mixture of independent and constrained refinement

Figure 2
A packing diagram of (I), viewed along the a axis.

Table 1
Selected geometric parameters $\left({ }^{\circ}\right)$.

$\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 6$	$127.0(3)$	$\mathrm{C} 25-\mathrm{C} 24-\mathrm{C} 22$	$125.2(3)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$128.4(3)$	$\mathrm{C} 24-\mathrm{C} 25-\mathrm{C} 26$	$128.7(3)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 1$	$-179.7(3)$	$\mathrm{C} 32-\mathrm{O} 4-\mathrm{C} 18-\mathrm{C} 23$	$175.6(3)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{O} 2$	$-179.6(3)$	$\mathrm{O} 4-\mathrm{C} 18-\mathrm{C} 19-\mathrm{C} 20$	$-179.9(3)$
$\mathrm{C} 16-\mathrm{O} 2-\mathrm{C} 4-\mathrm{C} 3$	$-176.2(3)$	$\mathrm{O} 5-\mathrm{C} 20-\mathrm{C} 21-\mathrm{C} 22$	$178.4(3)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$177.9(3)$	$\mathrm{O} 4-\mathrm{C} 18-\mathrm{C} 23-\mathrm{C} 22$	$178.9(3)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$170.8(3)$	$\mathrm{O} 6-\mathrm{C} 29-\mathrm{C} 30-\mathrm{C} 31$	$-179.9(2)$
$\mathrm{C} 17-\mathrm{O} 3-\mathrm{C} 12-\mathrm{C} 13$	$-171.1(3)$		

H atoms were placed geometrically and refined with a riding model.

Data collection: SMART (Bruker, 1997); cell refinement: SMART; data reduction: SAINT (Bruker, 1997) and SHELXTL (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The authors gratefully acknowledge financial support from the Foundation for University Key Teachers by the Ministry of Education of China.

References

Ali, M. A., Kondo, K. \& Tsuda, Y. (1992). Chem. Pharm. Bull. 40, 1130-1136. Bruker (1997). SADABS, SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Frémont, L. (2000). Life Sci. 66, 663-673.
Li, S., Lundquist, K. \& Stomberg, R. (1999). Acta Cryst. C55, 1012-1014.
Papper, V. \& Likhtenshtein, G. I. (2001). J. Photochem. Photobio. A, 140, 3952.

Savouret, J. F. \& Quesne, M. (2002). Biomed. Pharmacother. 56, 84-87.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Soto Bustmante, E. A. S., Hanemann, T. \& Haase, W. (1995). Acta Cryst. C51, 2192-2196.
Zheng, Y., Zhuang, J. P., Zhang, W. Q., Leng, X. B. \& Weng, L. H. (2001). Acta Cryst. E57, o1029-o1031.
Zhang, W. Q., Zhuang, J. P., Li, C. B., Sun, H. \& Yuan, X. N. (2001). Chin. J. Chem. 19, 695-701.

